

Wolfgang Hillert

ELectron Stretcher Accelerator

Physics Institute of Bonn University

3 simple questions:

• *Why?* ...do we need polarized electrons?

• *How?* ...do we generate and accelerate polarized electrons?

• *What?* ...R&D activities would be pursued @ HZDR ?

Matter and Forces

Electron Stretcher Accelerator (ELSA)

Electron Stretcher Accelerator (ELSA)

Generation of Polarized Electrons

Operation, heat cleaning and activation in extreme UHV Lifetime 1000 h ↔ P (H₂O, CO₂) < 10⁻¹³ mbar

Source of Polarized Electrons

Specific features:

- inverted HV geometry
- adjustable perveance
- full load lock system
- H-cleaning
- P > 80% @ E = 48 keV
- $I = 200 \text{ mA} @ \tau = 1 \mu \text{s}$
- QE-lifetime > 1000 h

Source of Polarized Electrons

Specific features:

- inverted HV geometry
- adjustable perveance
- full load lock system
- H-cleaning
- P > 80% @ E = 48 keV
- $I = 200 \text{ mA} @ \tau = 1 \mu \text{s}$
- QE-lifetime > 1000 h

Acceleration of polarized electrons TOF walls drift chambers **BGO-OD** tracking detectors BGO calorimeter tagger le (horizontal) le (vertical) \rightarrow Spin-Tune: $Q = \gamma a$ hadron drupole beam dump magnet physics v Quadrupole polarized upole arget experiments bined-Function Magnet noid **Crystal Barrel** tagger Møller o Frequency Mini-TAPS polarimeter magn. moment: B detector $\vec{\mu} = g \frac{e}{2m} \cdot \vec{S}$ Compton polarimeter (for internal beam) Flugzeitwände booster synchrotron irradiation 0.5 - 1.6 GeV area Π $\vec{\Omega}^* = -\frac{e}{m} \left(1 + \frac{a}{4}\right) \cdot \vec{B}$ ± >+H $\leq 10 \text{mA}$ **DESY** cavity $\frac{g-2}{2} \approx 10^{-3}$ \mathcal{M}_0 EKS LINAC 1 ron light (20 MeV) Lab frame: factor γ ! tic area Mott polarimeter electron < 200gun pol. e etector tests electron source gun construction) (50 keV) LINAC 2 (26 MeV) extraction septa

0 m

5 m

10 m

15 m

Depolarizing Resonances

Depolarizing Resonances

Situation at ELSA:

Imperfection Resonance:
$$\gamma \cdot a = n,$$
 $n \in Z$ Intrinsic Resonance: $\gamma \cdot a = n \cdot P \pm Q_z,$ $n \in Z$

Acc. of Polarized Electrons

Integer Resonances: $\gamma a = n$

- precise CO correction ($z_{\rm rms} < 80 \mu m$)
- harmonic correction:

40 20 0 -20 -40 -60 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

Intr. Resonances: $\gamma a = nP \pm Q_z$

- small vertical beam size
- tune jumping with pulsed quads

Spin-Orbit Response Technique

Spin-Orbit Response Technique

5 10 15 20 straight segment

Polarization at the Experiment

List of Research Efforts

 $(P \rightarrow 80\%, I \rightarrow 200 \text{mA})$

- Source of polarized electrons
- Precise and fast BPM system: $\Delta_{x,z} \approx \mu m$, 1kHz
- Fast bipolar steerer system: $\dot{B} = 2$ T/sec, $B \cdot l \approx 0.01$ T·m
- Harmcorr based on spin-orbit response technique
- Low-impedance vacuum chambers
- Effective ion clearing (35 clearing electrodes)
- HOM suppression in accelerating cavities
- 3D bunch-by-bunch feedback system ($\Delta f = 250$ MHz)
- FPGA-based LLRF control: $\Delta A/A < 3.10^{-4}$, $\Delta \phi < 0.04^{\circ}$
- 3D ps-diagnosis based on a streak camera system
- Cavity-based BPM for low intensities: $\Delta_{x,z} \approx 0.1$ mm, 100 pA
- Mott, Møller and Compton polarimetry
- High current single-bunch injector
- New RF station and cavities
- Numerical simulation of spin dynamics

Matter and Forces

Challenges for Light Sources (with respect to X-ray production)

Future R&D will concentrate on:

But another focus should be laid on

making facilities more compact and efficient

(which has been explicitly mentioned on the last strategy meeting by BMBF!)

Compact EUV FELs

Intense and Short Bunches with low Emittances

<u>Set-up @ ELBE:</u>

- Optimization of ballistic and magnetic bunching
- Precise synchronization and stabilization of accelerator RF
- Upgrade of SRF-gun, use of high QE photocathodes (Cs₂KSb, GaAs, GaN)
 ...

Program will benefit from extensive experience with SRF-guns!

- \rightarrow super-radiant THz generation in quasi-cw mode (beyond 10 THz)
- → injection into Laser-Plasma-Wakefield-Accelerator (inj-LWPA)
- \rightarrow intense coherent EUV photon beams with TWTS-OFEL
- \rightarrow fully 3D coherent quasi-cw EUV photon beams with TWTS-OFELO

Conclusions

- Polarized Electrons @
 - pulsed **photo-injector** with I = 200 mA, P = 80%
 - acceleration to $E \leq 2.4$ (3.2) GeV with $P_{\text{Exp}} \geq 60\%$
 - sophisticated correction schemes and beam diagnostics
 - upgrade to 200 mA internal current
 - routine operation for hadron physics experiments
- Challenging Perspectives @ HZDR:
 - demonstration of injection into LWPA
 - coherent EUV photons from TWTS-OFEL (compact, efficient)
 - **3D coherent EUV photons (quasi cw)** from TWTS-OFELO
 - higher intensities with energy recovery mode?

Thank you for your attention!

Machine Development: PhD students in the ELSA control room

Seeding of FELs

HGHG

(high gain harmonic generation)

Modulator

Buncher

Radiator

EEHG (Echo-enabled harmonic generation)

- First laser to generate energy modulation in electron beam
- First strong chicane to split the phase space
- Second laser to imprint energy modulation
- Second chicane to convert energy modulation into density modulation

Demonstration of EEHG at the 14th harmonic

 $n >> \Delta E/\sigma_{F}$

Coherent Bremsstrahlung

Beam energy: 3.2 GeV

Hydrogen Cleaning

Space Charge limited Emission

EGUN-Simulations:

Measurements:

Source and Transfer Line

Space-Charge dominated Beam Transfer at 48 keV

Fast Correction System

Programmable 4-Quadrant PS:

Correction Coils:

	new
voltage	200 V
max. current	8.0 A
inductance	260 mH
max. field	40 mT
weight	30 kg
field integral	9.8 mT m

$I = 400 \text{ A/sec} \leftrightarrow B = 2 \text{ Tesla/sec}$

Harmcor (sine) of $\gamma a = 3$

RF Control & Stabilization

Position Measurement in the pA-Regime

$\Delta x < 50 \mu m @ I = 100 pA, dx = 1mm$

Parameter	Value
Mode	TM_{110}
Inner diameter	242 mm
Inner length	52 mm
Opening diameter	34 mm
Resonant frequency ν_0	1.499010 GHz
Shunt impedance $R_s/\Delta x^2$ (CST)	411 Ω/mm^2
Unloaded quality factor Q_0	11090
Coupling factor κ	0.89

ps Diagnostics: Streak Camera

3D Imaging with ps Resolution

New RF System

- U = 90 kV
- $I = 800 \text{ mA} (1-2\mu s) / 2 \text{ A} (1 \text{ ns})$

Bunching:

- 500 MHz prebuncher
- 3 GHz TW buncher (4 cells)

LINAC:

- 20 MV 3GHz TW structure (constant gradient)
- ongoing overhaul of modulator and waveguides

Energy Compression System:

- 3-bend magnetic chicane
- 3GHz TW structure

Simulation of Spin Dynamics

Resonance crossing:

Electron Ring: Spin Dynamics

Concept 1: Sibirian (full) Snake

FODO lattice in the arcs
⇒ missing magnet → D = 0 in straights
> 1 solenoid, ΔS = 180°
⇒ $β_x = β_z$ in solenoid
≥ $ε_x = ε_z = 1.95$ mm·rad (norm) $τ_{Sp} \approx 7$ min @ 2.8 GeV

Concept 2: Spin Rotators

E = 3.3 GeV $(\Delta \Phi = 12^\circ)$

- **HBA**: 3 achromats à 6 dipoles
- $\geq D = 0$ in straight with vert. spin
- > 2 solenoid/dipole rotators, $\Delta S = 90^{\circ}$
- $\boldsymbol{\beta}_{\mathbf{x}} = \boldsymbol{\beta}_{\mathbf{z}}$ at entrance/exit of achromats
- $\succ \varepsilon_x = 3.8, \varepsilon_z = 3.1 \text{ mm} \cdot \text{rad (norm)}$

 $\tau_{Sp} > 100 \text{ min } @ 3.3 \text{ GeV}$

Synchrotron Oscillations

(= energy oscillations of beam's particles!)

Crossing of Synchotron Sidebands

Horizontal Polarization

Operation at $\gamma a = 3$

Energy Calibration

Beam Depolarization when crossing the Imperfection Resonance $\gamma a = 4$

Slow Beam Extraction

Ironless Quadrupole Magnets (Extraction):

Shift of the horizontal betatron tune close to a third integer value, "current feedback-loop"

Beam-Line for Detector Testing

BN3

BN1

-08

BN2

BN0

External Electron Beam:

- beam energy: **1.0 GeV** < *E* < **3.5 GeV**
- beam current: 1 fA < I < 100 pA
- beam radius: $0.5 \text{ mm} < \sigma < 7 \text{ mm}$

Single Pulse Operation!

Extraction of a single electron every 300 turns!