Problem 4.1

Consider the scalar potential of N=1 supergravity in the form

$$V = e^G (G^{i\bar{\jmath}} G_i G_{\bar{\jmath}} - 3) , \qquad G = K + \ln|W|^2$$

Compute the mass matrices in a Minkowskian background and show

$$M_{i\bar{\jmath}}^2 = \langle (\nabla_i G_k \bar{\nabla}_{\bar{\jmath}} G^k - R_{i\bar{\jmath}k\bar{l}} G^k G^{\bar{l}} + G_{i\bar{\jmath}}) e^G \rangle , \qquad M_{ij}^2 = \langle (G^k \nabla_i \nabla_j G_k + \nabla_i G_j + \nabla_j G_i) e^G \rangle ,$$

where $\nabla_i G_j = \partial_i G_j - \Gamma_{ij}^k G_k$, $\nabla_i G_{\bar{j}} = G_{i\bar{j}}$.

Hint: Use $\langle \nabla_i V \rangle = 0$ as the condition for a Minkowski minimum.

Problem 4.2

The Polonyi model is defined by

$$K = \phi \bar{\phi}$$
, $W_P = m^2(\phi + \beta)$, $m, \beta \in \mathbb{R}$

- a) For which β is supersymmetry spontaneously broken?
- b) Check that $\kappa \phi = \pm (\sqrt{3} 1)$, $\kappa \beta = \pm (2 \sqrt{3})$ is a Minkowskian extremum of the potential V.
- c) Compute the gravitino mass and $\langle F_{\phi} \rangle$.

Problem 4.3

Consider the situation where an observable sector is coupled to the Polonyi model with

$$K = \phi \bar{\phi} + Q^I \bar{Q}^I$$
, $W = \frac{1}{2} \mu_{IJ} Q^I Q^J + \frac{1}{3} Y_{IJL} Q^I Q^J Q^K + W_P(\phi)$,

where Q^I are the fields of the observable sector, m_{IJ}, Y_{IJL} are constant and W_P is given in problem 4.2.

- a) Compute the soft scalar masses and the A and B terms assuming that $\langle F_{\phi} \rangle$ is the only non-vanishing F-term. Are they universal?
- b) Compute the soft gaugino masses for the two cases of a gauge kinetic function $f(\phi)$ and f = constant. Are they universal?

Hint: Use the formulas given in section 10 of the lecture notes.